Contents

۳,

Ĺ.

Preface		ix
Acknowledgements		xii
Acknowled	gements for figures, and copyright issues	xiv
About the a	uthors	xvii
Chapter 1	Introduction: soil health, soil biology, sustainable agriculture and evidence-based information What is soil health? What is sustainable agriculture? Soil health and sustainable agriculture are inextricably linked The role of soil organisms The need for holistic solutions to soil-health problems Why is evidence-based information important? Outline of the book, and its purpose	1 2 3 3 3 4 5
Chapter 2	Soil physical, chemical and biological properties, and the key role of organic matter in promoting soil and plant health Soil composition Mineral particles Air Water	7 7 8
	Organic matter Soil properties Soil physical properties Soil chemical properties Soil biological properties The key role of organic matter in modifying soil properties and improving soil health Organic matter and soil physical health Organic matter and soil chemical health Organic matter and soil biological health Common soil physical and chemical constraints Concluding remarks	10 11 12 13 14 17 18 18 19 20 20 20 21
Chapter 3	Organisms in the soil food web and their functions Soil biodiversity Bacteria Fungi Archaea Cyanobacteria and algae	27 29 30 31 31

iii

	Protozoa	32
	Nematodes	33
	Mites and collembolans	34
	Enchytraeids, symphylans, tardigrades and other mesofauna	35
	The macrofauna: millipedes, centipedes, spiders, termites, ants, scorpions and	
	earthworms	37
	The soil food web	38
	Interactions between organisms in the soil food web	41
	Ecosystem services provided by the soil biota	46
	Improvement of soil structure and soil water regimes	46
	Production, storage and release of nutrients	47
	Suppression of soilborne pests and pathogens	49
	Plant growth promotion	50
	Degradation of toxic compounds	51
	The soil-root interface: a key site of biological activity	51
	Maintenance of the energy sources required to sustain soil biological processes	53
·	Concluding remarks	54
Chapter 4	Soilborne diseases: a major impediment to crop	
chapter .	production	55
	Diseases caused by Rhizoctonia	55
	Root rot, crown rot and vascular wilt diseases caused by <i>Fusarium</i>	60
	Take-all of cereals caused by Gaeumannomyces graminis	63
	Root rot and damping-off diseases caused by Pythium and Phytophthora	64
	Pachymetra root rot of sugarcane	- 67
	Diseases caused by Sclerotinia and Sclerotium	68
	Bacterial wilt caused by Ralstonia solanacearum	69
	Crown gall	70
	Diseases caused by nematode pests	71
	Sedentary endoparasites	71
	Migratory endoparasites	7 <u>4</u>
	Ectoparasites	77
	Estimating the amount of pathogen inoculum in soil	78
	Effects of environment and management on pathogen inoculum levels and	
	disease severity	79
	Diagnosis of soilborne diseases	80
	Integrated disease management	81
Chapter 5	Impact of natural enemies on soilborne pathogens	83
•	Interactions within the soil food web and their effects on soilborne pests	83
	and pathogens	00
	Classical, inundative, and conservation biological control, and its relevance to soilborne pests and pathogens	85
	Disease-suppressive soils: organic matter-mediated and specific forms of suppression	ı 87
	Benefits and limitations of different forms of suppression	88
	Identification of disease-suppressive soils, and indicators of suppression	89
	Impact of management on disease suppression	93
	The key role of organic matter in improving soil health and enhancing	
	disease suppression	94
	Examples of disease suppression	96
	Biological suppression of Rhizoctonia root rot	96
	Take-all decline of cereals	100
	Disease suppression in horticulture	101

•

	Specific suppression of plant-parasitic nematodes The role of organic and biological products in improving plant growth or enhancing disease suppression Soil improvers, bio-stimulants and plant-growth promoters Bio-inoculants Biopesticides Confirming the efficacy of organic and biological products	101 103 104 104 104 105
Chapter 6	 A practical guide to improving soil health and reducing losses from soilborne diseases Assess soil health and identify any physical, chemical and biological constraints Soil physical and chemical factors Soilborne diseases Low biological activity and diversity Determine the main limiting factors Identify options for improvement Monitor soilborne pathogens and beneficial organisms Modify soil and crop management practices Instigate a continuous process of assessment, modification and re-assessment Concluding remarks 	103 107 109 112 113 114 118 120 121 130 130
	Case study: Growers and consultants use a root disease testing service to monitor pathogens and reduce losses from soilborne diseases	133
Chapter 7	 Grain farming systems to improve soil health and enhance biological suppression of soilborne diseases Conservation agriculture: the first step in building an active, diverse and resilient soil biological community Conservation agriculture and soil organic matter The key role of high cropping intensities and crop rotation The biological impact of conservation agriculture Second-tier practices to continue the soil improvement process Avoidance of compaction through traffic control Biomass-producing cover crops and organic amendments Integrated crop and livestock production Site-specific management of inputs Integrated pest management systems Options to further improve best-practice farming systems More effective plant nutrition Greater levels of disease suppression and biological control Improved resilience under stress Concluding remarks Conservation grisk in a drought-prone environment	137 138 138 140 141 144 145 146 146 146 147 147 148 149 149
Chapter 8	Annual and perennial pastures to improve soil health in grain-cropping systems The role of perennial pastures in improving soil health The impact of climate and pasture species on soil biological properties The contribution of mixed farming systems to sustainability	155 155 158 159

i.

vi Soil Health, Soil Biology, Soilborne Diseases and Sustainable Agriculture

ſ

....

	Choice of pasture species	159
	Options for the future	160
	Concluding remarks	161
	Case study: Living roots mean a healthy, living soil	162
Chapter 9	Yield decline of sugarcane: a soil health problem	
	overcome by modifying the farming system	165
	The conventional sugarcane farming system	165
	The impact of the conventional sugarcane farming system on soil health	166
	Soil structure/compaction	166
	Soil organic matter	167
	A more custainable sugarcane farming system	168
	Soil health and biological benefits from the new farming system	109
	The impact of the new sugarcane farming system on soilborne pests and pathogens	174
	Effects on Pachymetra root rot	174
	Managing nematode pests with rotation crops	174
	The impact of tillage on the resurgence of nematode pests	176
	Enhancing suppression of nematode pests with inputs of organic matter	176
	Specific suppression of nematode pests by bacteria in the genus Pasteuria	177
	Effects of pesticides and fertilisers on the biological health of sugarcane soils	179
	Improving soil health is a long-term process	179
	Concluding remarks	180
	Case study: Incremental changes to a sugarcane farming system improve soil health and profitability	182
	Case study: Controlled traffic and soybean rotation crops produce multiple benefits in a sugarcane farming system	184
Chapter 10	Vegetable farming systems: the challenge of improving	
	demands high levels of productivity	187
	High-input vegetable production systems	187
	Possible components of more sustainable vegetable production systems	189
	Crop rotation, cover crops, companion planting and residue retention	190
	Biofumigation	193
	Appropriate planting times and cultural practices	195
	Reduced tillage	195
	Controlled traffic	196
	Precision agriculture	197
	Organic amendments	19 7
	Nutrient management	199
	Irrigation management	200
	Diregnated management of pests and diseases	200
	Organic and onlogical products	201 202
	Integrated management systems	202
	Concluding remarks	204
	Case study: No-till zucchini production reduces costs and	
	improves soil health in the dry tropics	206

Case study: Sustainable vegetable production on land 208 prone to soil erosion Options for improving soil health and minimising losses Chapter 11 from soilborne diseases in perennial horticultural crops 211 211 Reducing or eliminating tillage 211 Using cover crops to maintain ground cover 213 Minimising compaction 213 Mulching 214Organic amendments Examples of disease management systems for perennial crops 216 216 The Ashburner system of controlling Phytophthora root rot of avocado Mulching to reduce specific replant disease in apple orchards 219 221 Root disease management in banana Enhancing specific agents to suppress particular pathogens 223 224

Case study: Managing soil, water and nematode pests on a **225** banana plantation in a tropical environment

	sustainability	227
Chapter 12	Key soil health messages, and practices that should be included in holistic soil improvement programs	231
	The main messages from the book	231
	Key practices to improve soil health and sustainability	233
References	and further reading	235
- 1		247

Case study: Wine-grape production with a focus on

Index

Concluding remarks