brief contents

PART 1	Fundamentals of deep learning1
	 What is deep learning? 3 Before we begin: the mathematical building blocks of neural networks 24 Getting started with neural networks 50 Fundamentals of machine learning 84
PART 2	DEEP LEARNING IN PRACTICE 109
	 Deep learning for computer vision 111 Deep learning for text and sequences 164 Advanced deep-learning best practices 218 Generative deep learning 250 Conclusions 293

contents

preface xiii
acknowledgments xv
about this book xvi
about the authors xx
about the cover xxi

PART 1 FUNDAMENTALS OF DEEP LEARNING1

What is deep learning? 3

1.1 Artificial intelligence, machine learning, and deep learning 4

Artificial intelligence 4 • Machine learning 4 • Learning representations from data 6 • The "deep" in deep learning 8 Understanding how deep learning works, in three figures 9 What deep learning has achieved so far 11 • Don't believe the short-term hype 12 • The promise of AI 12

1.2 Before deep learning: a brief history of machine learning 13

Probabilistic modeling 14 • Early neural networks 14
Kernel methods 15 • Decision trees, random forests, and gradient boosting machines 16 • Back to neural networks 17 • What makes deep learning different 17 • The modern machine-learning landscape 18

viii CONTENTS

1.3

		investment 21 • The democratization of deep learning 22 Will it last? 22	
2	Before we begin: the mathematical building blocks of neural networks 24		
	2.1	A first look at a neural network 25	
	2.2	Data representations for neural networks 29	
		Scalars (OD tensors) 29 • Vectors (1D tensors) 29 • Matrices (2D tensors) 30 • 3D tensors and higher-dimensional tensors 30 Key attributes 30 • Manipulating tensors in R 31 • The notion of data batches 32 • Real-world examples of data tensors 32 Vector data 32 • Timeseries data or sequence data 33 • Video data 34	
	2.3	The gears of neural networks: tensor operations 34	
		Element-wise operations 35 • Operations involving tensors of different dimensions 36 • Tensor dot 36 • Tensor reshaping 38 • Geometric interpretation of tensor operations 39 A geometric interpretation of deep learning 40	
	2.4	The engine of neural networks: gradient-based optimization 41	
		What's a derivative? 42 • Derivative of a tensor operation: the gradient 43 • Stochastic gradient descent 44 • Chaining derivatives: the Backpropagation algorithm 46	
	2.5	Looking back at our first example 47	
	2.6	Summary 49	
3	Gettir	ng started with neural networks 50	
	3.1	Anatomy of a neural network 51	
		Layers: the building blocks of deep learning 52 • Models: networks of layers 52 • Loss functions and optimizers: keys to configuring the learning process 53	
	3.2	Introduction to Keras 54	
		Keras, TensorFlow, Theano, and CNTK 54 • Installing Keras 56 • Developing with Keras: a quick overview 56	
	3.3	Setting up a deep-learning workstation 57	
		Getting Keras running: two options 58 • Running deep-learning	

jobs in the cloud: pros and cons 58 • What is the best GPU for deep

learning? 59

Why deep learning? Why now? 19

Hardware 19 • Data 20 • Algorithms 21 • A new wave of

CONTENTS ix

3.4 Classifying movie reviews:
a binary classification example 59

The IMDB dataset 59 • Preparing the data 61 • Building your network 62 • Validating your approach 65 • Using a trained network to generate predictions on new data 68 • Further experiments 69 • Wrapping up 69

3.5 Classifying newswires: a multiclass classification example 70

The Reuters dataset 70 • Preparing the data 71
Building your network 72 • Validating your approach 73
Generating predictions on new data 74 • A different way to handle the labels and the loss 75 • The importance of having sufficiently large intermediate layers 75 • Further experiments 76 • Wrapping up 76

- 3.6 Predicting house prices: a regression example 76

 The Boston Housing Price dataset 77 Preparing the data 77

 Building your network 78 Validating your approach using

 K-fold validation 79 Wrapping up 83
- 3.7 Summary 83

Fundamentals of machine learning 84

- 4.1 Four branches of machine learning 85

 Supervised learning 85 Unsupervised learning 85

 Self-supervised learning 86 Reinforcement learning 86
- 4.2 Evaluating machine-learning models 87

 Training, validation, and test sets 88 Things to keep in mind 91
- 4.3 Data preprocessing, feature engineering, and feature learning 91

Data preprocessing for neural networks 91 • Feature engineering 93

- 4.4 Overfitting and underfitting 94

 Reducing the network's size 95 Adding weight regularization 98 Adding dropout 100
- 4.5 The universal workflow of machine learning 102

 Defining the problem and assembling a dataset 102 Choosing a measure of success 103 Deciding on an evaluation protocol 104 Preparing your data 104

X CONTENTS

Summary 107

4.6

PART 2

P LEARNING IN PRACTICE 109
learning for computer vision 111
Introduction to convnets 111
The convolution operation 114 • The max-pooling operation 119
Training a convnet from scratch on a small dataset 121
The relevance of deep learning for small-data problems 121 Downloading the data 122 • Building your network 124 Data preprocessing 126 • Using data augmentation 128
Using a pretrained convnet 132
Feature extraction 133 • Fine-tuning 142 Wrapping up 146
Visualizing what convnets learn 146
Visualizing intermediate activations 146 • Visualizing convnet filters 153 • Visualizing heatmaps of class activation 159
Summary 163
learning for text and sequences 164
Working with text data 165
One-hot encoding of words and characters 166 • Using word embeddings 169 • Putting it all together: from raw text to word embeddings 174 • Wrapping up 180
Understanding recurrent neural networks 180
A recurrent layer in Keras 182 • Understanding the LSTM and GRU layers 186 • A concrete LSTM example in Keras 188 Wrapping up 190
Advanced use of recurrent neural networks 190
A temperature-forecasting problem 191 • Preparing the data 193 A common-sense, non-machine-learning baseline 197 • A basic machine-learning approach 198 • A first recurrent baseline 199 Using recurrent dropout to fight overfitting 201 • Stacking recurrent layers 202 • Using bidirectional RNNs 204 Going even further 207 • Wrapping up 208

Developing a model that does better than a baseline Scaling up: developing a model that overfits 105

Regularizing your model and tuning your hyperparameters 106

6.5 Summary 216

Advanced deep-learning best practices 218

7.1 Going beyond the sequential model: the Keras functional API 219

Introduction to the functional API 221 • Multi-input models 222 • Multi-output models 224 • Directed acyclic graphs of layers 227 • Layer weight sharing 231 • Models as layers 232 • Wrapping up 233

7.2 Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard 233

Using callbacks to act on a model during training 233 Introduction to TensorBoard: the TensorFlow visualization framework 236 • Wrapping up 241

7.3 Getting the most out of your models 241

Advanced architecture patterns 241 • Hyperparameter optimization 245 • Model ensembling 246 • Wrapping up 248

7.4 Summary 249

Generative deep learning 250

8.1 Text generation with LSTM 252

A brief history of generative recurrent networks 252

How do you generate sequence data? 253 • The importance of the sampling strategy 253 • Implementing character-level LSTM text generation 255 • Wrapping up 260

8.2 DeepDream 260

Implementing DeepDream in Keras 261 • Wrapping up 267

8.3 Neural style transfer 267

The content loss 268 • The style loss 268 • Neural style transfer in Keras 269 • Wrapping up 274

8.4 Generating images with variational autoencoders 276

Sampling from latent spaces of images 276 • Concept vectors for image editing 277 • Variational autoencoders 278

Wrapping up 284

xii CONTENTS

8.5 Introduction to generative adversarial networks 284

A schematic GAN implementation 286 • A bag of tricks 286
The generator 287 • The discriminator 288
The adversarial network 289 • How to train your
DCGAN 290 • Wrapping up 292

8.6 Summary 292

Conclusions 293

9.1 Key concepts in review 294

Various approaches to AI 294 • What makes deep learning special within the field of machine learning 294 • How to think about deep learning 295 • Key enabling technologies 296

The universal machine-learning workflow 297 • Key network architectures 298 • The space of possibilities 302

9.2 The limitations of deep learning 303

The risk of anthropomorphizing machine-learning models 304 Local generalization vs. extreme generalization 306 Wrapping up 307

9.3 The future of deep learning 307

Models as programs 308 • Beyond backpropagation and differentiable layers 310 • Automated machine learning 310 Lifelong learning and modular subroutine reuse 311 • The long-term vision 313

9.4 Staying up to date in a fast-moving field 313

Practice on real-world problems using Kaggle 314 • Read about the latest developments on arXiv 314 • Explore the Keras ecosystem 315

- 9.5 Final words 315
- appendix A Installing Keras and its dependencies on Ubuntu 316 appendix B Running RStudio Server on an EC2 GPU instance 320

index 327